Exam Weightage & Blueprint
Total: ~10-12 MarksDifferential Equations is one of the most important chapters for Board exams. It combines calculus concepts with practical problem-solving techniques.
| Question Type | Marks | Frequency | Focus Topic |
|---|---|---|---|
| MCQ | 1 | Very High | Order & Degree, Basic concepts |
| Short Answer (2M) | 2 | High | Variable separable method |
| Long Answer (4M) | 4 | Very High | Homogeneous DE, Linear DE |
| Long Answer (6M) | 6 | Medium | Application problems |
Last 24-Hour Checklist
Basic Concepts
Order & Degree
Degree: The power of the highest order derivative when the equation is a polynomial in derivatives.
Degree Defined
$\left(\frac{d^2y}{dx^2}\right)^3 + 5\frac{dy}{dx} = 0$
Order = 2, Degree = 3
Degree NOT Defined
$\frac{dy}{dx} + \sin\left(\frac{dy}{dx}\right) = 0$
Not polynomial in derivatives.
General & Particular Solutions
Particular Solution: Obtained by giving specific values to constants (using initial conditions).
Methods of Solving DE
1. Variable Separable
2. Homogeneous Differential Equations
Method: Put $y = vx \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}$.
Separate variables in $v$ and $x$, integrate, then put $v = y/x$.
3. Linear Differential Equations
Integrating Factor (I.F.): $e^{\int P dx}$
Solution: $y \cdot (I.F.) = \int Q \cdot (I.F.) \, dx + C$
Solved Examples (Board Marking Scheme)
Q1. Solve: $\frac{dy}{dx} = \frac{1+x}{2-y}$ where $y \neq 2$. (2 Marks)
$(2-y)dy = (1+x)dx$.
$\int (2-y) dy = \int (1+x) dx$
$2y - \frac{y^2}{2} = x + \frac{x^2}{2} + C$.
Q2. Solve: $(x-y)\frac{dy}{dx} = x + 2y$. (4 Marks)
$\frac{dy}{dx} = \frac{x+2y}{x-y}$. Put $y = vx \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}$.
$v + x\frac{dv}{dx} = \frac{1+2v}{1-v} \Rightarrow x\frac{dv}{dx} = \frac{1+2v-v+v^2}{1-v} = \frac{v^2+v+1}{1-v}$.
$\frac{1-v}{v^2+v+1} dv = \frac{dx}{x}$.
Integrate both sides and replace $v = y/x$.
Q3. Solve: $\frac{dy}{dx} - y = \cos x$. (4 Marks)
$P = -1, Q = \cos x$.
$I.F. = e^{\int -1 dx} = e^{-x}$.
$y \cdot e^{-x} = \int e^{-x} \cos x dx$.
Let $I = \int e^{-x} \cos x dx$. Use integration by parts twice.
$I = \frac{e^{-x}}{2}(\sin x - \cos x)$.
Final: $y = \frac{1}{2}(\sin x - \cos x) + Ce^x$.
Previous Year Questions (PYQs)
(A) 1 (B) 2 (C) 3 (D) Not defined
Ans: (B). Highest order is 2, its power is 2.
Hint: Rewrite as $\frac{dx}{dy} = x+y \Rightarrow \frac{dx}{dy} - x = y$. This is Linear DE in $x$.
$P = -1, Q = y$. $I.F. = e^{-y}$. Solution: $x e^{-y} = \int y e^{-y} dy$.
(A) $\cos x$ (B) $\sec x$ (C) $e^{\tan x}$ (D) $\tan x$
Ans: (B). $I.F. = e^{\int \tan x dx} = e^{\log|\sec x|} = \sec x$.
Exam Strategy & Mistake Bank
Common Mistakes
Scoring Tips
Practice Problems (Self-Assessment)
Level 1: Basic (2 Marks Each)
Q1. Find order and degree: $\left(\frac{dy}{dx}\right)^3 + 2\frac{dy}{dx} = x$.
Q2. Solve: $\frac{dy}{dx} = e^{x+y}$.
Level 2: Intermediate (4 Marks Each)
Q3. Solve: $\frac{dy}{dx} + \frac{y}{x} = x^2$.
Solution: $yx = \int x^3 dx = x^4/4 + C$.
Q4. Solve: $(x^2+xy)dy = (x^2+y^2)dx$.