Exam Weightage & Blueprint
Total: ~10-12 MarksIntegrals is the heavyweight champion of Class 12 Maths. It forms the basis for Application of Integrals and Differential Equations. Mastery of integration techniques is non-negotiable.
| Question Type | Marks | Frequency | Focus Topic |
|---|---|---|---|
| MCQ | 1 | Very High | Standard Formulas, Simple Definite Integrals |
| Short Answer (2M) | 2 | High | Substitution Method, Trigonometric Identities |
| Short Answer (3M) | 3 | High | Partial Fractions, Integration by Parts, Special Integrals |
| Long Answer | 5 | Very High | Properties of Definite Integrals (especially P4) |
Last 24-Hour Checklist
Indefinite Integrals: Key Methods
1. Integration by Substitution
Example: $\int 2x \sin(x^2+1) dx$. Put $x^2+1=t \Rightarrow 2x dx = dt$.
2. Integration by Parts
Inverse Trig, Logarithmic, Algebraic, Trigonometric, Exponential.
3. Special Integrals (Memorize!)
$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log|\frac{x-a}{x+a}| + C$
$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log|\frac{a+x}{a-x}| + C$
$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}\frac{x}{a} + C$
$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log|x + \sqrt{x^2 - a^2}| + C$
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\frac{x}{a} + C$
$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log|x + \sqrt{x^2 + a^2}| + C$
Definite Integrals & Properties
$\int_a^b f(x) dx = F(b) - F(a)$, where $F'(x) = f(x)$.
Important Properties
Property P4 (King's Property)
$\int_0^a f(x) dx = \int_0^a f(a-x) dx$
Use when: Denominator remains same after replacing $x$ with $a-x$.
Property P3
$\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$
(General version of P4)
$\int_{-a}^a f(x) dx = \begin{cases} 2\int_0^a f(x) dx, & \text{if } f(-x) = f(x) \text{ (Even)} \\ 0, & \text{if } f(-x) = -f(x) \text{ (Odd)} \end{cases}$
Solved Examples (Board Marking Scheme)
Q1. Evaluate $\int \frac{x}{(x+1)(x+2)} dx$. (3 Marks)
Let $\frac{x}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$.
$x = A(x+2) + B(x+1)$.
Put $x = -1 \Rightarrow -1 = A(1) \Rightarrow A = -1$.
Put $x = -2 \Rightarrow -2 = B(-1) \Rightarrow B = 2$.
$\int (\frac{-1}{x+1} + \frac{2}{x+2}) dx = -\log|x+1| + 2\log|x+2| + C$.
$= \log|x+2|^2 - \log|x+1| + C = \log\left|\frac{(x+2)^2}{x+1}\right| + C$.
Q2. Evaluate $\int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$. (4 Marks)
Let $I = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx \quad \dots (1)$
$I = \int_0^{\pi/2} \frac{\sqrt{\sin(\pi/2 - x)}}{\sqrt{\sin(\pi/2 - x)} + \sqrt{\cos(\pi/2 - x)}} dx$
$I = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx \quad \dots (2)$
$2I = \int_0^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$
$2I = \int_0^{\pi/2} 1 \, dx = [x]_0^{\pi/2} = \frac{\pi}{2}$.
$I = \frac{\pi}{4}$.
Q3. Find $\int e^x (\tan^{-1}x + \frac{1}{1+x^2}) dx$. (2 Marks)
We know that $\int e^x [f(x) + f'(x)] dx = e^x f(x) + C$.
Here, let $f(x) = \tan^{-1}x$, then $f'(x) = \frac{1}{1+x^2}$.
So, Integral $= e^x \tan^{-1}x + C$.
Previous Year Questions (PYQs)
Ans: Complete the square: $x^2+2x+2 = (x+1)^2 + 1^2$.
Integral becomes $\int \frac{dx}{\sqrt{(x+1)^2 + 1^2}} = \log| (x+1) + \sqrt{(x+1)^2+1} | + C = \log|x+1+\sqrt{x^2+2x+2}| + C$.
Ans: Let $I = \int_0^{\pi/2} \log(\tan x) dx$. Using P4, $I = \int_0^{\pi/2} \log(\tan(\pi/2-x)) dx = \int_0^{\pi/2} \log(\cot x) dx$.
Adding both: $2I = \int_0^{\pi/2} (\log \tan x + \log \cot x) dx = \int_0^{\pi/2} \log(\tan x \cdot \cot x) dx = \int_0^{\pi/2} \log(1) dx = 0$.
So $I = 0$.
Hint: Degree of numerator $\ge$ denominator. Divide first. $x^2+1 = 1(x^2-5x+6) + (5x-5)$.
Integral $= \int 1 dx + \int \frac{5x-5}{(x-2)(x-3)} dx$. Use partial fractions for the second part.
Exam Strategy & Mistake Bank
Common Mistakes
Scoring Tips
Practice Problems (Self-Assessment)
Level 1: Basic (1 Mark Each)
Q1. Find $\int (e^{2x} + x^2) dx$.
Q2. Evaluate $\int_1^{\sqrt{3}} \frac{dx}{1+x^2}$.
Level 2: Intermediate (2-3 Marks Each)
Q3. Find $\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} dx$.
Ans: $\sec x - \csc x + C$.
Q4. Evaluate $\int x \sin x dx$.
Level 3: Advanced (5 Marks Each)
Q5. Evaluate $\int_0^{\pi} \frac{x \sin x}{1+\cos^2 x} dx$.
Add original and new: $2I = \pi \int_0^\pi \frac{\sin x}{1+\cos^2 x} dx$. Put $\cos x = t$.
Ans: $\frac{\pi^2}{4}$.