Exam Weightage & Blueprint
Total: ~8-10 MarksThis chapter applies differentiation to real-world problems. Maxima and Minima word problems are a favorite for 5-mark questions (or Case Studies).
| Question Type | Marks | Frequency | Focus Topic |
|---|---|---|---|
| MCQ | 1 | High | Rate of Change, Increasing/Decreasing Intervals |
| Short Answer (2M) | 2 | Medium | Rate of Change, Slope of Tangent (if in syllabus) |
| Short Answer (3M) | 3 | High | Finding Intervals for Inc/Dec, Local Maxima/Minima |
| Long Answer / Case Study | 4/5 | Very High | Optimization Word Problems (Maxima/Minima) |
Last 24-Hour Checklist
Rate of Change of Quantities
If both vary with time $t$: $$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$
Example: Area of circle $A = \pi r^2$. Rate of change w.r.t radius is $\frac{dA}{dr} = 2\pi r$. Rate of change w.r.t time is $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$.
Increasing and Decreasing Functions
Strictly Increasing
$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
Condition: $f'(x) > 0$ for all $x \in (a, b)$.
Strictly Decreasing
$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$
Condition: $f'(x) < 0$ for all $x \in (a, b)$.
1. Find $f'(x)$.
2. Put $f'(x) = 0$ to find critical points.
3. Divide the domain into disjoint intervals.
4. Check the sign of $f'(x)$ in each interval.
Maxima and Minima
Second Derivative Test (Most Used)
1. If $f''(c) < 0$, then $c$ is a point of Local Maxima.
2. If $f''(c) > 0$, then $c$ is a point of Local Minima.
3. If $f''(c) = 0$, the test fails (use First Derivative Test).
Absolute Maxima/Minima (Closed Interval)
1. Find all critical points $c_1, c_2, \dots$ in $(a, b)$.
2. Evaluate $f(x)$ at all critical points AND endpoints $a$ and $b$.
3. The largest value is Absolute Max, smallest is Absolute Min.
Solved Examples (Board Marking Scheme)
Q1. The volume of a cube is increasing at the rate of 8 cm³/s. How fast is the surface area increasing when the length of an edge is 12 cm? (3 Marks)
Let side $= x$, Volume $V = x^3$, Surface Area $S = 6x^2$.
Given $\frac{dV}{dt} = 8$ cm³/s.
$\frac{dV}{dt} = \frac{d}{dt}(x^3) = 3x^2 \frac{dx}{dt}$.
$8 = 3x^2 \frac{dx}{dt} \Rightarrow \frac{dx}{dt} = \frac{8}{3x^2}$.
$\frac{dS}{dt} = \frac{d}{dt}(6x^2) = 12x \frac{dx}{dt}$.
Substitute $\frac{dx}{dt}$: $\frac{dS}{dt} = 12x \left(\frac{8}{3x^2}\right) = \frac{32}{x}$.
At $x = 12$: $\frac{dS}{dt} = \frac{32}{12} = \frac{8}{3}$ cm²/s.
Q2. Find the intervals in which $f(x) = 2x^3 - 3x^2 - 36x + 7$ is strictly increasing. (3 Marks)
$f'(x) = 6x^2 - 6x - 36 = 6(x^2 - x - 6) = 6(x-3)(x+2)$.
$f'(x) = 0 \Rightarrow x = 3, x = -2$.
Intervals: $(-\infty, -2), (-2, 3), (3, \infty)$.
For $(-\infty, -2)$: Test $x=-3 \Rightarrow f'(-3) = 6(-6)(-1) > 0$. (Increasing)
For $(-2, 3)$: Test $x=0 \Rightarrow f'(0) = -36 < 0$. (Decreasing)
For $(3, \infty)$: Test $x=4 \Rightarrow f'(4) = 6(1)(6) > 0$. (Increasing)
Ans: Strictly increasing in $(-\infty, -2) \cup (3, \infty)$.
Q3. Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area. (5 Marks)
Let circle radius $= a$ (constant). Let rectangle sides be $x$ and $y$.
$x^2 + y^2 = (2a)^2 = 4a^2 \Rightarrow y = \sqrt{4a^2 - x^2}$.
Area $A = xy = x\sqrt{4a^2 - x^2}$.
Let $Z = A^2 = x^2(4a^2 - x^2) = 4a^2x^2 - x^4$.
$\frac{dZ}{dx} = 8a^2x - 4x^3$.
$\frac{dZ}{dx} = 0 \Rightarrow 4x(2a^2 - x^2) = 0$. Since $x \neq 0$, $x^2 = 2a^2 \Rightarrow x = \sqrt{2}a$.
$\frac{d^2Z}{dx^2} = 8a^2 - 12x^2$. At $x^2 = 2a^2$: $8a^2 - 24a^2 = -16a^2 < 0$.
Hence, Area is Maximum.
If $x^2 = 2a^2$, then $y^2 = 4a^2 - 2a^2 = 2a^2$. So $x = y$.
Since sides are equal, the rectangle is a square.
Previous Year Questions (PYQs)
(A) Strictly increasing on R (B) Strictly decreasing on R (C) Neither (D) None
Ans: (A). $f'(x) = 3x^2 - 6x + 12 = 3(x^2 - 2x + 4) = 3[(x-1)^2 + 3]$. Since $(x-1)^2 \ge 0$, $f'(x) \ge 9 > 0$ for all real $x$.
Ans: $A = \pi r^2 \Rightarrow \frac{dA}{dr} = 2\pi r$. At $r=5$, Rate $= 10\pi$ cm²/cm.
Hint: Let pieces be $x$ and $28-x$. Perimeter of square $= x \Rightarrow$ side $= x/4$. Circumference $= 28-x \Rightarrow r = (28-x)/2\pi$. Minimize $A = (x/4)^2 + \pi r^2$.
Exam Strategy & Mistake Bank
Common Mistakes
Scoring Tips
Practice Problems (Self-Assessment)
Level 1: Basic (1 Mark Each)
Q1. Find the slope of the tangent to the curve $y = 3x^4 - 4x$ at $x = 4$.
Q2. The total revenue in Rupees received from the sale of $x$ units is given by $R(x) = 3x^2 + 36x + 5$. Find the marginal revenue when $x = 15$.
Level 2: Intermediate (2-3 Marks Each)
Q3. Find the local maxima and local minima of $f(x) = x^3 - 6x^2 + 9x + 15$.
At $x=1, f'' < 0$ (Max). At $x=3, f'' > 0$ (Min).
Q4. Find the intervals in which $f(x) = \sin x + \cos x, 0 \le x \le 2\pi$ is strictly increasing.
Level 3: Advanced (5 Marks Each)
Q5. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius $R$ is $\frac{2R}{\sqrt{3}}$.
Maximize $V = \pi r^2 h = \pi (R^2h - h^3/4)$. Differentiate w.r.t $h$.