Exam Weightage & Blueprint
Total: ~8-10 MarksDeterminants is a crucial chapter often combined with Matrices. The "Matrix Method" for solving linear equations is a guaranteed long-answer question in most board exams.
| Question Type | Marks | Frequency | Focus Topic |
|---|---|---|---|
| MCQ | 1 | Very High | Value of $|kA|$, Singular Matrix, Area of Triangle |
| Short Answer (2M) | 2 | Medium | Area of Triangle, Adjoint Properties |
| Short Answer (3M) | 3 | High | Properties of Determinants (if in syllabus), Inverse |
| Long Answer | 5 | Very High | Solving System of Linear Equations ($AX=B$) |
Last 24-Hour Checklist
Basic Concepts & Properties
1. Determinant of a Matrix
For $2 \times 2$: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$.
For $3 \times 3$: Expand along any row/column using signs $\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$.
2. Important Properties
Reflection Property
$|A| = |A'|$
(Value remains same if rows and columns are interchanged)
Scalar Multiplication
$|kA| = k^n |A|$
Where $n$ is the order of matrix $A$. (Most asked MCQ!)
3. Area of Triangle
Adjoint and Inverse
Minors and Cofactors
Cofactor ($A_{ij}$): $A_{ij} = (-1)^{i+j} M_{ij}$.
Adjoint of a Matrix
Property: $A(\text{adj } A) = (\text{adj } A)A = |A|I$.
Inverse of a Matrix
Consistent System
If $|A| \neq 0$, unique solution exists: $X = A^{-1}B$.
Inconsistent System
If $|A| = 0$ and $(\text{adj } A)B \neq O$, no solution.
Solved Examples (Board Marking Scheme)
Q1. If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, then show that $|2A| = 4|A|$. (2 Marks)
$2A = 2\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix}$.
$|2A| = (2)(4) - (4)(8) = 8 - 32 = -24$.
$|A| = (1)(2) - (2)(4) = 2 - 8 = -6$.
$4|A| = 4(-6) = -24$.
Hence, LHS = RHS.
Q2. Find the area of the triangle with vertices $(2, 7), (1, 1), (10, 8)$. (2 Marks)
$\Delta = \frac{1}{2} \begin{vmatrix} 2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1 \end{vmatrix}$
$= \frac{1}{2} [ 2(1-8) - 7(1-10) + 1(8-10) ]$
$= \frac{1}{2} [ 2(-7) - 7(-9) + 1(-2) ]$
$= \frac{1}{2} [ -14 + 63 - 2 ] = \frac{1}{2} [ 47 ] = 23.5$.
Area = 23.5 sq units.
Q3. Solve the system of equations: $2x + 5y = 1$, $3x + 2y = 7$ using matrix method. (5 Marks)
$A = \begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}, B = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$.
$|A| = 4 - 15 = -11 \neq 0$. Unique solution exists.
Cofactors: $A_{11}=2, A_{12}=-3, A_{21}=-5, A_{22}=2$.
$\text{adj } A = \begin{bmatrix} 2 & -5 \\ -3 & 2 \end{bmatrix}$.
$X = \frac{1}{-11} \begin{bmatrix} 2 & -5 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 7 \end{bmatrix}$
$= \frac{1}{-11} \begin{bmatrix} 2 - 35 \\ -3 + 14 \end{bmatrix} = \frac{1}{-11} \begin{bmatrix} -33 \\ 11 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.
So, $x = 3, y = -1$.
Previous Year Questions (PYQs)
(A) -10 (B) 10 (C) -40 (D) 40
Ans: (D). $|2A'| = |2A|$ (since $|A'|=|A|$). Using $|kA| = k^n|A|$, $|2A| = 2^3 |A| = 8 \times 5 = 40$.
Ans: We know $A(\text{adj } A) = |A|I$. So $|A(\text{adj } A)| = ||A|I|$. Since $|A|I$ is a scalar matrix with diagonal elements $|A|$, its determinant is $|A|^n$. If order is not given (assume 3), answer is $3^3 = 27$. If order 2, $3^2=9$.
Hint: Apply $R_2 \to R_2 - 2R_1$ and $R_3 \to R_3 - 3R_1$. Then expand.
Exam Strategy & Mistake Bank
Common Mistakes
Scoring Tips
Practice Problems (Self-Assessment)
Level 1: Basic (1 Mark Each)
Q1. Evaluate $\begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix}$.
Q2. Find $x$ if $\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$.
Level 2: Intermediate (2-3 Marks Each)
Q3. Find the equation of the line joining $A(1, 3)$ and $B(0, 0)$ using determinants.
$\frac{1}{2} \begin{vmatrix} x & y & 1 \\ 1 & 3 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 0 \Rightarrow 1(3x - y) = 0 \Rightarrow y = 3x$.
Q4. If $A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$.
Level 3: Advanced (5 Marks Each)
Q5. Solve the following system of equations by matrix method:
$3x - 2y + 3z = 8$
$2x + y - z = 1$
$4x - 3y + 2z = 4$
Steps: Find $|A| = -17$. Find adj A. Then $X = A^{-1}B$.