Exam Weightage & Blueprint
Total: ~6-8 MarksMatrices is one of the easiest chapters in Class 12. It is often combined with Determinants in the Algebra unit (Total 10 marks). Focus on multiplication and symmetric properties.
| Question Type | Marks | Frequency | Focus Topic |
|---|---|---|---|
| MCQ | 1 | Very High | Order, Equality, Skew-Symmetric definition |
| Short Answer (2M) | 2 | High | Matrix Multiplication, Construction of Matrix |
| Short Answer (3M) | 3 | Medium | Express as Sum of Symmetric & Skew-Symmetric |
| Long Answer | 5 | Low | Word problems (rare), usually from Determinants |
Last 24-Hour Checklist
Types of Matrices
Column & Row
Column: Only 1 column ($m \times 1$)
Row: Only 1 row ($1 \times n$)
Square Matrix
Rows = Columns ($m = n$)
Example: $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
Diagonal Matrix
Non-diagonal elements are zero.
$A = \text{diag}(d_1, d_2, \dots)$
Scalar Matrix
Diagonal matrix with equal diagonal elements.
$a_{ij} = k$ for $i=j$, else $0$.
Identity Matrix ($I$)
Scalar matrix with diagonal elements = 1.
$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Zero Matrix ($O$)
All elements are zero.
Denoted by $O$.
Operations on Matrices
1. Addition & Subtraction
Add/Subtract corresponding elements: $C_{ij} = A_{ij} \pm B_{ij}$.
2. Multiplication of Matrices
Columns of A = Rows of B
If $A$ is $m \times n$ and $B$ is $n \times p$, then $AB$ is $m \times p$.
• Not Commutative: Generally $AB \neq BA$.
• Associative: $(AB)C = A(BC)$.
• Distributive: $A(B+C) = AB + AC$.
• Identity: $IA = AI = A$.
3. Transpose of a Matrix ($A'$ or $A^T$)
Properties:
1. $(A')' = A$
2. $(kA)' = kA'$
3. $(A+B)' = A' + B'$
4. $(AB)' = B'A'$ (Very Important!)
Symmetric & Skew-Symmetric Matrices
Symmetric Matrix
If $A' = A$
i.e., $a_{ij} = a_{ji}$ for all $i, j$.
Example: $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$
Skew-Symmetric Matrix
If $A' = -A$
i.e., $a_{ij} = -a_{ji}$ for all $i, j$.
Note: All diagonal elements must be ZERO.
Theorem: Decomposition of Matrix
Solved Examples (Board Marking Scheme)
Q1. Construct a $2 \times 2$ matrix $A = [a_{ij}]$ whose elements are given by $a_{ij} = \frac{(i+2j)^2}{2}$. (2 Marks)
$a_{11} = \frac{(1+2)^2}{2} = \frac{9}{2}$
$a_{12} = \frac{(1+4)^2}{2} = \frac{25}{2}$
$a_{21} = \frac{(2+2)^2}{2} = \frac{16}{2} = 8$
$a_{22} = \frac{(2+4)^2}{2} = \frac{36}{2} = 18$
$A = \begin{bmatrix} 9/2 & 25/2 \\ 8 & 18 \end{bmatrix}$
Q2. If $A = \begin{bmatrix} 3 & 5 \\ 2 & a \end{bmatrix}$ is a symmetric matrix, find $a$. (1 Mark)
For symmetric matrix, $A' = A$, so $a_{ij} = a_{ji}$.
Here $a_{12} = 5$ and $a_{21} = 2$. Wait, for symmetric $a_{12}$ must equal $a_{21}$.
If the question implies finding a variable to make it symmetric, say $B = \begin{bmatrix} 3 & x \\ 2 & 4 \end{bmatrix}$, then $x=2$.
Correction in Question Logic: A matrix is symmetric if $a_{12} = a_{21}$. In the given matrix, $5 \neq 2$, so it can never be symmetric regardless of $a$. Let's assume question was: Find $x$ if $\begin{bmatrix} 3 & x \\ 2 & 4 \end{bmatrix}$ is symmetric. Then $x=2$.
Q3. Express $A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrix. (3 Marks)
$A' = \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix}$
$P = \frac{1}{2}(A + A') = \frac{1}{2} \left( \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix} 6 & 6 \\ 6 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & -1 \end{bmatrix}$
Check: $P' = P$. Correct.
$Q = \frac{1}{2}(A - A') = \frac{1}{2} \left( \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix} 0 & 4 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$
Check: $Q' = -Q$. Correct.
$A = P + Q = \begin{bmatrix} 3 & 3 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$
Previous Year Questions (PYQs)
(A) $A$ (B) $I - A$ (C) $I$ (D) $3A$
Ans: (C). Expand $(I+A)^3 = I^3 + A^3 + 3I^2A + 3IA^2 = I + A + 3A + 3A = I + 7A$. So $(I+7A) - 7A = I$. (Note: $A^3 = A^2 \cdot A = A \cdot A = A$).
Ans: $2(1)+y=5 \Rightarrow y=3$. $2x+2=8 \Rightarrow 2x=6 \Rightarrow x=3$. So $x-y = 3-3=0$.
Ans: 0. (Determinant of odd order skew-symmetric matrix is always zero).
Exam Strategy & Mistake Bank
Common Mistakes
Scoring Tips
Practice Problems (Self-Assessment)
Level 1: Basic (1 Mark Each)
Q1. If a matrix has 24 elements, what are the possible orders it can have?
Q2. Construct a $2 \times 2$ matrix where $a_{ij} = |-2i + 3j|$.
Level 2: Intermediate (2-3 Marks Each)
Q3. Find $X$ and $Y$, if $X+Y = \begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix}$ and $X-Y = \begin{bmatrix} 3 & 6 \\ 0 & -1 \end{bmatrix}$.
Ans: $X = \begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix}, Y = \begin{bmatrix} 1 & -2 \\ 0 & 5 \end{bmatrix}$.
Q4. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 - 5A + 7I = O$.
Level 3: Advanced (4 Marks Each)
Q5. Find the matrix $X$ so that $X \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$.
Ans: $X = \begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix}$.