Chapter 11: Three Dimensional Geometry

Complete Board Exam Focused Notes with Lines, Shortest Distance & PYQs

Exam Weightage & Blueprint

Total: ~11-13 Marks

3D Geometry is a high-weightage chapter often combined with Vectors. The "Shortest Distance between two lines" is a guaranteed 5-mark question in almost every board exam.

Question Type Marks Frequency Focus Topic
MCQ 1 Very High Direction Cosines, Angle between lines
Short Answer (2M) 2 High Equation of Line (Vector/Cartesian)
Short Answer (3M) 3 Medium Angle between lines, Perpendicular lines
Long Answer (5M) 5 Very High Shortest Distance between Skew Lines

Last 24-Hour Checklist

Direction Cosines & Direction Ratios

Direction Cosines (DCs): If a line makes angles $\alpha, \beta, \gamma$ with x, y, z axes respectively, then $l = \cos\alpha, m = \cos\beta, n = \cos\gamma$ are called direction cosines.
Relation: $l^2 + m^2 + n^2 = 1$
Direction Ratios (DRs): Any three numbers $a, b, c$ proportional to direction cosines $l, m, n$.
$\frac{l}{a} = \frac{m}{b} = \frac{n}{c} = k$

Finding DCs from DRs: $$l = \pm \frac{a}{\sqrt{a^2+b^2+c^2}}, \quad m = \pm \frac{b}{\sqrt{a^2+b^2+c^2}}, \quad n = \pm \frac{c}{\sqrt{a^2+b^2+c^2}}$$

Direction Ratios of line joining two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$:

$a = x_2 - x_1, \quad b = y_2 - y_1, \quad c = z_2 - z_1$

Equation of a Line in Space

1. Line through a Point and Parallel to a Vector

Vector Form

$\vec{r} = \vec{a} + \lambda\vec{b}$

$\vec{a}$: Position vector of point

$\vec{b}$: Parallel vector (Direction)

Cartesian Form

$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$

$(x_1, y_1, z_1)$: Point

$a, b, c$: Direction Ratios

2. Line Passing Through Two Points

Vector Form

$\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$

Cartesian Form

$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$

Angle and Distance Between Lines

Angle Between Two Lines:
If lines are parallel to vectors $\vec{b_1}$ and $\vec{b_2}$: $$\cos\theta = \left| \frac{\vec{b_1} \cdot \vec{b_2}}{|\vec{b_1}||\vec{b_2}|} \right|$$ Conditions:
Perpendicular: $\vec{b_1} \cdot \vec{b_2} = 0$ (or $a_1a_2 + b_1b_2 + c_1c_2 = 0$)
Parallel: $\vec{b_1} = \lambda\vec{b_2}$ (or $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$)

Shortest Distance (Most Important 5M Topic)

Distance between Skew Lines

Lines: $\vec{r} = \vec{a_1} + \lambda\vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu\vec{b_2}$

$$d = \left| \frac{(\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_2} - \vec{a_1})}{|\vec{b_1} \times \vec{b_2}|} \right|$$

Distance between Parallel Lines

Lines: $\vec{r} = \vec{a_1} + \lambda\vec{b}$ and $\vec{r} = \vec{a_2} + \mu\vec{b}$

$$d = \left| \frac{\vec{b} \times (\vec{a_2} - \vec{a_1})}{|\vec{b}|} \right|$$

Solved Examples (Board Marking Scheme)

Q1. Find the direction cosines of the line passing through the points $(-2, 4, -5)$ and $(1, 2, 3)$. (2 Marks)

Step 1: Find Direction Ratios 1 Mark

$a = 1 - (-2) = 3$

$b = 2 - 4 = -2$

$c = 3 - (-5) = 8$

Step 2: Calculate Magnitude & DCs 1 Mark

$\sqrt{a^2+b^2+c^2} = \sqrt{9 + 4 + 64} = \sqrt{77}$

DCs are $\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$

Q2. Find the shortest distance between the lines $\vec{r} = \hat{i} + \hat{j} + \lambda(2\hat{i} - \hat{j} + \hat{k})$ and $\vec{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu(3\hat{i} - 5\hat{j} + 2\hat{k})$. (5 Marks)

Step 1: Identify Vectors 1 Mark

$\vec{a_1} = \hat{i} + \hat{j}, \quad \vec{b_1} = 2\hat{i} - \hat{j} + \hat{k}$

$\vec{a_2} = 2\hat{i} + \hat{j} - \hat{k}, \quad \vec{b_2} = 3\hat{i} - 5\hat{j} + 2\hat{k}$

$\vec{a_2} - \vec{a_1} = \hat{i} - \hat{k}$

Step 2: Calculate $\vec{b_1} \times \vec{b_2}$ 2 Marks

$\vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & -5 & 2 \end{vmatrix}$

$= \hat{i}(-2+5) - \hat{j}(4-3) + \hat{k}(-10+3) = 3\hat{i} - \hat{j} - 7\hat{k}$

$|\vec{b_1} \times \vec{b_2}| = \sqrt{9 + 1 + 49} = \sqrt{59}$

Step 3: Calculate Dot Product 1 Mark

$(\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_2} - \vec{a_1}) = (3\hat{i} - \hat{j} - 7\hat{k}) \cdot (\hat{i} - \hat{k})$

$= 3(1) + (-1)(0) + (-7)(-1) = 3 + 7 = 10$

Step 4: Final Formula 1 Mark

$d = \left| \frac{10}{\sqrt{59}} \right| = \frac{10}{\sqrt{59}}$ units.

Previous Year Questions (PYQs)

2023 (1 Mark MCQ): If the direction cosines of a line are $k, k, k$, then:
(A) $k > 0$   (B) $0 < k < 1$   (C) $k = \pm \frac{1}{\sqrt{3}}$   (D) $k = \frac{1}{3}$
Ans: (C). Since $l^2+m^2+n^2=1 \Rightarrow 3k^2=1 \Rightarrow k = \pm \frac{1}{\sqrt{3}}$.
2022 (3 Marks): Find the equation of the line passing through the point $(1, 2, -4)$ and perpendicular to the two lines $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$.
Hint: Direction of required line is $\vec{b} = \vec{b_1} \times \vec{b_2}$.
$\vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}$. Then use point-parallel form.
2020 (5 Marks): Find the shortest distance between the lines whose vector equations are $\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}$ and $\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$.
Solution:
Convert to standard form:
$\vec{r} = (\hat{i}-2\hat{j}+3\hat{k}) + t(-\hat{i}+\hat{j}-2\hat{k})$
$\vec{r} = (\hat{i}-\hat{j}-\hat{k}) + s(\hat{i}+2\hat{j}-2\hat{k})$
Here $\vec{a_1} = \hat{i}-2\hat{j}+3\hat{k}, \vec{b_1} = -\hat{i}+\hat{j}-2\hat{k}$
$\vec{a_2} = \hat{i}-\hat{j}-\hat{k}, \vec{b_2} = \hat{i}+2\hat{j}-2\hat{k}$
Calculate $\vec{a_2}-\vec{a_1} = \hat{j}-4\hat{k}$ and $\vec{b_1} \times \vec{b_2} = 2\hat{i}-4\hat{j}-3\hat{k}$.
Distance $d = |\frac{8}{\sqrt{29}}|$.

Exam Strategy & Mistake Bank

Common Mistakes

Mistake 1: In Cartesian form $\frac{x-x_1}{a}$, ensuring coefficient of $x, y, z$ is 1. If given $\frac{2x-1}{3}$, rewrite as $\frac{x-1/2}{3/2}$.
Mistake 2: Forgetting the modulus in the shortest distance formula. Distance cannot be negative!
Mistake 3: Confusing Direction Ratios (DRs) with Direction Cosines (DCs). Remember $l^2+m^2+n^2=1$ for DCs.
Mistake 4: Calculation error in determinant expansion for cross product $\vec{b_1} \times \vec{b_2}$.

Scoring Tips

Tip 1: Always check if lines are parallel ($\vec{b_1} = \lambda\vec{b_2}$) before applying the skew lines formula.
Tip 2: For 5-mark questions on Shortest Distance, write the formula clearly at the start. It carries 1 mark.
Tip 3: If finding foot of perpendicular, assume a general point on the line and use dot product = 0.
Tip 4: Convert Cartesian to Vector form if you find vector operations easier (or vice versa).

Formula Sheet (Must Remember!)

Direction Cosines & Lines

1. Relation: $l^2 + m^2 + n^2 = 1$

2. From DRs: $l = \pm\frac{a}{\sqrt{a^2+b^2+c^2}}$, etc.

3. Vector Eq: $\vec{r} = \vec{a} + \lambda\vec{b}$

4. Cartesian Eq: $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$

5. Two Points: $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$

Angle & Distance

6. Angle: $\cos\theta = |\frac{\vec{b_1} \cdot \vec{b_2}}{|\vec{b_1}||\vec{b_2}}|}$ or $|\frac{a_1a_2+b_1b_2+c_1c_2}{\sqrt{\dots}\sqrt{\dots}}|$

7. Perpendicular: $\vec{b_1} \cdot \vec{b_2} = 0$ or $a_1a_2 + b_1b_2 + c_1c_2 = 0$

8. Parallel: $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

9. Shortest Distance (Skew): $d = |\frac{(\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_2} - \vec{a_1})}{|\vec{b_1} \times \vec{b_2}|}|$

10. Distance (Parallel): $d = |\frac{\vec{b} \times (\vec{a_2} - \vec{a_1})}{|\vec{b}|}|$

Practice Problems (Self-Assessment)

Level 1: Basic (1-2 Marks Each)

Q1. If a line makes angles $90^\circ, 135^\circ, 45^\circ$ with the x, y and z axes respectively, find its direction cosines.

Answer: $0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$.

Q2. Find the equation of the line passing through $(1, 2, 3)$ and parallel to vector $3\hat{i} + 2\hat{j} - 2\hat{k}$.

Answer: $\vec{r} = (\hat{i}+2\hat{j}+3\hat{k}) + \lambda(3\hat{i}+2\hat{j}-2\hat{k})$.

Level 2: Intermediate (3-4 Marks Each)

Q3. Find the angle between the lines $\frac{x+3}{3} = \frac{y-1}{5} = \frac{z+3}{4}$ and $\frac{x+1}{1} = \frac{y-4}{1} = \frac{z-5}{2}$.

Answer: $\cos\theta = \frac{3(1)+5(1)+4(2)}{\sqrt{9+25+16}\sqrt{1+1+4}} = \frac{16}{\sqrt{50}\sqrt{6}} = \frac{16}{10\sqrt{3}}$. $\theta = \cos^{-1}(\frac{8}{5\sqrt{3}})$.

Q4. Find the coordinates of the foot of the perpendicular drawn from the point $(0, 2, 3)$ to the line $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$.

Hint: General point $P(5\lambda-3, 2\lambda+1, 3\lambda-4)$. Direction of perpendicular is $\vec{AP}$. Dot product with line direction $(5, 2, 3)$ is 0. Solve for $\lambda$.

Level 3: Advanced (5 Marks Each)

Q5. Find the shortest distance between the lines $\vec{r} = (6\hat{i} + 2\hat{j} + 2\hat{k}) + \lambda(\hat{i} - 2\hat{j} + 2\hat{k})$ and $\vec{r} = (-4\hat{i} - \hat{k}) + \mu(3\hat{i} - 2\hat{j} - 2\hat{k})$.

Answer: 9 units.

Quick Revision Tips (1 Day Before Exam)

Must Revise Topics

Formulas to Memorize:

  1. Direction Cosines relation
  2. Shortest Distance (Skew Lines)
  3. Angle between lines
  4. Equation of line (2 forms)

Common Question Types:

  1. Find Shortest Distance (5M)
  2. Find Foot of Perpendicular (3M/5M)
  3. Find Angle (2M)
  4. Convert Cartesian to Vector (1M)

Time Management Per Question

1 Mark (MCQ) = 1-2 minutes
2 Marks = 3-4 minutes
3 Marks = 5-6 minutes
5 Marks = 8-10 minutes (Shortest Distance calculation takes time!)

Exam Day Checklist

Before Starting 3D Questions:

  • Read question carefully - Is it Vector or Cartesian form?
  • Check if lines are parallel or skew.
  • Verify if equation is in standard form ($\frac{x-x_1}{a}$).

While Solving:

  • Write formula first.
  • Show determinant expansion for cross product.
  • Don't forget modulus for distance/angle.
  • Box the final answer with units.
← Chapter 10 Chapter 12 →
Back